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Hydrated sulphate minerals, including kieserite (MgSO4·H2O), gypsum (CaSO4·2H2O), and bassanite 

(CaSO4·~0.5H2O), have been detected on Mars (Gendrin et al., 2005; Wray et al., 2010), and 

polyhydrated Mg-sulphate minerals such as epsomite (MgSO4·7H2O) and meridianite 

(MgSO4·11H2O) may be common near the surface of the planet. Kieserite, gypsum, and bassanite 

have all been identified in close association with phyllosilicate minerals (most likely Fe-rich smectites 

such as nontronite) at the surface of Mars (Wiseman et al., 2008; Milliken et al., 2010; Roach et al., 

2010; Wray et al., 2010).  Layered sedimentary deposits at Gale Crater, the landing site for the Mars 

Science Laboratory mission, appear to contain polyhydrated Mg-sulphate minerals, kieserite, and Fe-

rich smectite in close association (Milliken et al., 2010).  

 

Because water ice is unstable on the surface at the low water-vapour pressures that dominate in near-

equatorial regions of Mars (Paige, 1992; Feldman et al., 2004a), some or even much of the H2O 

detected near the planet’s surface is suspected to reside within the crystal structures of hydrated 

minerals like Ca- and Mg-sulphates, smectites, and zeolites (Clark, 1978; Bish et al., 2003; Feldman et 

al., 2004b; Vaniman et al., 2004).  The hydration states of these minerals are strongly dependent on the 

temperature and relative humidity (RH) conditions to which they are exposed.  Thus, considering the 

large diurnal variations in temperature and RH that have been detected at the martian surface 

(Savijärvi, 1995), hydrated minerals may have an effect on cycling and bioavailability of water on 

Mars (e.g., Bish et al., 2003; Vaniman et al., 2004; Wang et al., 2006, 2009, 2011; Vaniman and 

Chipera, 2006; Chipera and Vaniman, 2007; Chou and Seal, 2007; Steiger et al., 2011).  Hydrated 

sulphate minerals and smectites have also been identified as potential targets for astrobiological 

exploration of Mars because of their potential to preserve organic biosignatures (Summons et al., 

2011).  Although (1) the behaviour of smectites and (2) the phase relationships amongst hydrated Mg-

sulphate minerals have each been examined under various conditions of RH and temperature, the 

capacity for interaction and reaction between these RH-sensitive minerals has not been assessed in 

detail. 

 

Using in situ experiments that employ powder X-ray diffraction (XRD), we demonstrate that cation-

exchange reactions can occur rapidly in mixtures of hydrated Mg-sulphate minerals and smectite clays 

(Clay Minerals Society Source Clays SAz-1, Ca-montmorillonite, and SWy-1, Na-montmorillonite) 

under conditions of varying relative humidity (RH) similar to those that operate at or just beneath the 
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martian surface (Wilson and Bish, 2011).  These cation-exchange reactions can take place in the 

absence of free, liquid H2O and appear to be mediated by the formation of thin films of water at 

relative humidities below the deliquescence humidity of MgSO4·xH2O. Cation exchange produces 

hydrated Ca-sulphates, gypsum and bassanite, via transfer of cations and H2O between the smectite 

interlayer and grains of Mg-sulphate minerals.  This process is accompanied by a readily detectable 

volume increase and can induce mass wasting. 

 

A series of long-term ex situ experiments builds upon the results of our in situ studies to demonstrate 

that cation-exchange reactions occur within smectite-sulphate mixtures over a range of temperatures (-

25˚C to +23˚C) and RH (7% to 100%) relevant to near-equatorial sites on Mars such as Gale Crater.  

Thus, hydrated Ca-sulphate minerals may be useful indicators of cycling of H2O and nutrients within 

martian regolith and layered sedimentary deposits.  Our results suggest that cycling of H2O between 

the atmosphere and minerals within the martian regolith could have provided an unexpectedly 

accessible – and detectable – source of water and nutrients for putative martian micro-organisms. 

 

Deliquescence of hydrated Mg-sulphate phases at high RH is suppressed in the presence of smectites.  

Rather than producing a slurry of MgSO4 brine and H2O-saturated smectite, H2O is consumed during 

cation-exchange reactions by uptake into the smectite interlayer.  Thus, smectite-rich mixtures of RH-

sensitive minerals may restrict formation of brines on Mars. Co-existence of smectites and hydrated 

Mg-sulphate minerals appears to buffer RH within mineral mixtures, which can result in production 

and preservation of Mg-sulphate phases other than those expected from measured values of 

atmospheric RH.  Dehydration of highly hydrated Mg-sulphate phases slows dramatically in the 

presence of smectite. For instance, starkeyite (MgSO4·4H2O) is expected to be the most common 

dehydration product of epsomite (MgSO4·7H2O) at low but non-freezing temperatures and RH values 

less than ~30%; however, epsomite and hexahydrite (MgSO4·6H2O) persist for months within 

smectite–sulphate mixtures at T>0˚C and starkeyite is not observed.  Epsomite and hexahydrite may 

be preserved on significantly longer timescales at T<0˚C as the rate of dehydration slows with 

decreasing temperature (e.g., Vaniman and Chipera, 2005; Wang et al., 2009, 2011).  Preservation and 

detection of viable microbial cells and molecular biomarkers within epsomite crystals has been 

demonstrated previously (Foster et al., 2010).  The ability of smectites to suppress deliquescence of 

Mg-sulphate minerals at high RH and to slow or limit Mg-sulphate phase transitions could support 

long-term preservation of biomarkers within pristine crystals of highly hydrated Mg-sulphate minerals. 

 

The results of our in situ and ex situ XRD experiments suggest that the results of previous studies of 

mineral stability in the MgSO4–H2O system may be inadequate predictors of phase stability (and thus 

H2O/nutrient cycling and biomarker preservation) within smectite-rich regolith and layered deposits. 
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