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Introduction 

Clay minerals possess sorptive capacities for organic and inorganic matter, including DNA (Lorenz 

and Wackernagel, 1994), and hence reduce the utilization and degradation of organic matter or DNA 

by microorganisms.  Buried allophane-rich soils on tephras (volcanic-ash beds) on the North Island, 

dated using tephrochronology, provide a valuable paleobiological ‘laboratory’ for studying the 

preservation of ancient DNA (aDNA) (Haile et al., 2007).  Allophane comprises Al-rich 

nanocrystalline spherules ~3.55 nm in diameter (Fig. 1) with extremely large surface areas (up to 

1000 m
2
 g

-1
).  Moreover, allophanic soils are strongly associated with organic matter (Parfitt, 2009), 

and so we hypothesize that allophane also plays an important role for DNA protection within such 

soils. 

 
Fig. 1.  Nanoscale dimensions and composition of imogolite tubules and allophane spherules (from 

McDaniel et al., 2012), and (at right) the atomic structure of allophane (from Theng and Yuan, 2008). 

 

Greaves and Wilson (1970) suggested that RNA adsorbed in the central zones of montmorillonites 

may undergo less attack by microbial enzymes, but the RNA sorbed on surfaces of individual 

montmorillonite particles is not protected.  Their results catalysed our research interest that DNA may 

be physically protected and preserved in the interspaces between spherules of allophane clustered 

together as microaggregates as well as being chemically sorbed on the surfaces of allophane spherules.  

Kahle et al. (2003) showed that coarse and fine clay fractions of illitic soils had different capacities for 

carbon storage, supporting the hypothesis that allophane clusters of different sizes have various 

capacities to hold DNA.  DNA adsorption isotherms on synthetic and natural allophanes have been 

completed recently (Saeki et al., 2010), but no one has investigated the influence of allophane cluster 
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size on DNA adsorption and the exact mechanisms provided by such clusters or microaggregates for 

adsorption of organic matter. 

 

DNA-clay interaction and analysis 

The DNA molecule comprises heterocyclic bases and pentose-phopho-diester backbone (Fig. 2).  The 

distribution, content and structure of DNA in cells have been determined using near-edge X-ray 

absorption fine structure (NEXAFS) (Zhang et al., 1996; Fujii et al., 2003).  Other researchers have 

also investigated the interactions of DNA with clay minerals, including montmorillonite and kaolinite 

and other soil colloidal particles using Fourier transform infrared (FTIR) spectroscopy (Cai et al., 

2006).  Using synchrotron-based NEXAFS, we should be able to determine the electron configuration 

of the specific atoms (C, N, and P) comprising DNA.  To ascertain the real interaction between 

allophane clusters and DNA (and organic carbon), synchrotron-based techniques provide the ideal 

approach to clarify the geochemistry of DNA as it occurs in allophanic soils. 

 
Fig. 2.  Five heterocyclic aromatic amine bases most common to nucleic acids and the basic structures 

of DNA fragments (modified after Brown and Poon, 2005). 

 

Objectives and experimental design 

We want to know why and how allophane is able to ‘hold’ and protect DNA from degradation.  The 

answers are of benefit not only in explaining the development of genetic preservation but also in 

providing a better understanding of the role of allophanic soils in carbon sequestration.  Two 

objectives of this study are as follows: 

1. To evaluate the sorptive capacities for DNA fragments of clusters of allophane (microaggregates) 

of different sizes and hence to evaluate the physical and chemical adsorption/protection provided 

by allophane clusters to hold DNA fragments in allophanic soil systems. 

2. To determine the fingerprint of DNA bound to allophane clusters using synchrotron-based 

NEXAFS and to identify ancient DNA within buried soils. 

 

Four sets of allophanic soils from the North Island are to be analysed in this study, three from tephra-

derived buried horizons (on rhyolitic Taupo, Whakatane, and Rotoma tephras, deposited c. 1780, 

5500, and 9500 cal years ago, respectively) and one from the upper subsoil horizon of the Tirau soil, a 

Typic Hapludand derived from incremental accumulations of thin, mainly rhyolitic, tephras (Lowe and 

Palmer, 2005).  Clay-size fractions from each sample will be subjected to four physical and chemical 
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dispersion treatments (hand-inversion, prolonged shaking, zirconium nitrate addition, and pH 

alteration) to generate allophane clusters/microaggregates with a range of sizes.  These allophane 

clusters will be characterized by measuring their specific surface areas and pore size distributions 

using nitrogen gas adsorption and laser-sizer analysis. Modern DNA (e.g., salmon-sperm DNA) (Saeki 

et al., 2010) will be mixed with the allophane cluster fractions of different sizes to determine their 

DNA sorption capacity.  The ‘moist’ DNA-allophane complexes will be observed using environmental 

scanning electron microscopy (SEM), because we want to prevent DNA-allophane complexes from 

transformation during drying.  However, dried samples are required for high-vacuum transmission 

electron microscopy (TEM), and hence air-dried samples without interference will be prepared for 

TEM analysis.  NEXAFS analysis is to be used to examine the air-dried DNA-allophane complexes to 

obtain the near edge fine structures of C (energy range: 280−300 eV), N (395−425 eV) and P 

(2140−2180 eV) (1s) transitions comprising the DNA molecules and their surrounding atoms. The X-

ray absorption spectra of C, N, and P could be used to enable ‘fingerprints’ of DNA within allophane 

clusters, or of DNA fragments in allophanic soil materials, to be recognised.  Moreover, speciation of 

C and N within allophane clusters could be usefully illustrated. 

 

Expected DNA adsorption isotherms and outcomes 

We hypothesize that the allophane clusters of different sizes possess differing capacities for DNA 

adsorption, and that the larger allophane clusters would have more adsorptive sites for DNA (Fig. 3).  

The small allophane clusters have higher specific surface areas and a higher affinity for DNA 

adsorption because of chemisorption, and so DNA fragments are easily sorbed on small allophane 

clusters.  Consequently, the adsorptive trend flattens out when available adsorptive sites are saturated 

(Fig. 3).  On the other hand, the large allophane clusters, possessing lower surface areas, have a 

moderate affinity for DNA as evident in the first part of the adsorption isotherm; nevertheless, large 

allophane clusters adsorb DNA eventually and have higher sorbed capacity (Fig. 3).  We hypothesize 

that DNA fragments are slowly sorbed into the interspaces (gaps) of the allophane clusters (where they 

end up being physically ‘protected’). 

 
Fig. 3.  Predicted DNA adsorption isotherms on small and large allophane clusters (based on findings 

in Saeki et al., 2010) 
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Thus, we aim to test this hypothesis to find out if allophane holds DNA (or organic matter) through 

this ‘physical habitation’ model  i.e., amidst the interspaces of the allophane clusters  as well as 

through chemisorption that arises as a consequence of the very large surface area and cation exchange 

capacity of allophane spherules.  It is anticipated that DNA fragments existing in allophanic soils have 

specific functional groups, and the structures of allophane and the DNA-allophane complex are thus 

somewhat different.  The functional groups and structures of carbonic compounds are able to be 

identified according to the excited energy (absorption edge) of carbon (Fig. 4).  We thus aim to use 

these differences in functional groups to determine the existence of ancient DNA within buried 

allophanic soils and to ascertain the DNA-protective ability of such soils. 

   
Fig. 4.  Carbon NEXAFS spectra obtained within selected areas of microaggregates: (a) quinonic, (b) 

aromatic, (c) phenolic, (d) aliphatic, (e) peptidic, (f) carboxylic, (g) carbonate/carbonyl functional 

groups (Wan et al., 2007) 

 

References 
Brown W, Poon T (2005)  Nucleic acids.  In ‘Introduction to Organic Chemistry. 3

rd
 edition.’ (eds. W Brown, T 

Poon) pp. 570-593. (Wiley, Hoboken, NJ) 

Cai P, Huang QY, Zhang XW (2006)  Interactions of DNA with clay minerals and soil colloidal particles and 

protection against degradation by DNase.  Environmental Science and Technology 40, 2971-2976. 

Fujii K, Akamatsu K, Yokoya A (2003)  The measurement of molecular fragments from DNA components using 

synchrotron radiation.  Surface Science 528, 249-254. 

Greaves MP, Wilson MJ (1970)  The degradation of nucleic acids and montmorillonite-nucleic-acid complexes 

by soil microorganisms.  Soil Biology and Biochemistry 2, 257-268. 

Haile J, Holdaway R, Oliver K, Bunce M, Gilbert MTP, Nielsen R, Munch K, Ho SYW, Shapiro B, Willerslev E 

(2007)  Ancient DNA chronology within sediment deposits: are paleobiological reconstructions possible 

and is DNA leaching a factor?  Molecular Biology and Evolution 24, 982-989. 

Kahle M, Kleber M, Torn MS, Jahn R (2003)  Carbon storage in coarse and fine clay fractions of illitic soils.  

Soil Science Society of America Journal 67, 1732-1739. 

Lorenz MG, Wackernagel W (1994)  Bacterial gene transfer by natural genetic transformation in the 

environment.  Microbiological Reviews 58, 563-602. 

Lowe DJ, Palmer DJ (2005)  Andisols of New Zealand and Australia.  Journal of Integrated Field Science 2, 39-

65. 

McDaniel PA, Lowe DJ, Arnalds O, Ping CL (2012)  Andisols.  In ‘Handbook of Soil Sciences. 2
nd

 edition. Vol. 

1: Properties and Processes.’ (eds. PM Huang, Y Li, ME Sumner) pp.33.29-33.48. (CRC Press, Boca 

Raton, FL) 

Parfitt RL (2009)  Allophane and imogolite: role in soil biogeochemical processes.  Clay Minerals 44, 135-155. 

Saeki K, Sakai M, Wada SI (2010)  DNA adsorption on synthetic and natural allophanes.  Applied Clay Science 

50, 493-497. 

Theng BKG, Yuan G (2008)  Nanoparticles in the soil environment.  Elements 4, 395-399. 

Wan J, Tyliszczak T, Tokunaga TK (2007)  Organic carbon distribution, speciation, and elemental correlations 

within soil microaggregates: applications of STXM and NEXAFS spectroscopy.  Geochimica et 

Cosmochimica Acta 71, 5439-5449. 

Zhang X, Balhorn R, Mazrimas J, Kirz J (1996)  Mapping and measuring DNA to protein ratios in mammalian 

sperm head by XANES imaging.  Journal of Structural Biology 116, 335-344. 


