

Government of Western Australia Department of Mines, Industry Regulation and Safety Geological Survey of Western Australia

'Beneath the sand of the Tanami Desert' ARGA 2018, Wallaroo, SA

Nadir de Souza Kovacs

Ngururrpa program

The program area covers the traditional land of the Parna Ngururrpa People in a remote part of the Tanami Desert in WA

Parna Ngururrpa people invited GSWA to survey their country aiming to stimulate mineral exploration

- gravity survey
- regolith landform map 1:250 000
- geochemical soil sampling

Geomorphology

The landscape is flat, with variably weathered, low lying rock outcrops, and extensive eolian dune fields, sandplain and lacustrine - playa terrain. Semi-arid, sandy soils, spinifex, sparse small shrubs and scattered small trees

NW-SE Stansmore Range, max 510m asl – to the west lies the Canning Plain and the Great Sandy Dessert

Salt lakes and Neoproterozoic sandstone ridges covered by silcrete veneers are common to the East

Government of Western Australia | Department of Mines, Industry Regula

Geology

Phanerozoic Canning Basin - Eastern margin – sandstone, siltstone, minor conglomerate, coal, limestone

Proterozoic Centralia Murraba Basin – sandstone, wacke, conglomerate, siltstone, shale, limestone, dolomite, chert, and glauconitic sandstone

Proterozoic NAC - N border Granites-Tanami Orogen; granitic and S border Arunta Orogen; meta-igneous and meta-sedimentary

- Regional faults and linear structures
- Stansmore Fault
- Minor linear structures

Beneath the sand...but how far beneath...

At the Surface Orthophotos, Digital Elevation Models

....depends on the information provided by...

- ✓ Direct observation 2015 sampling rock and residual regolith at less than 1 m deep
- ✓ Geophysical image expression of regolith
- ✓ Inference from shallow stratigraphic holes in the neighbouring area (regolith thickness 1m to 90m)

Surface to 30–45 cm deep Radiometric KTU, LANDSAT AGSO ratios

Near surface – deeper (?) (1 m to 90 m) Magnetic VD1, Gravity

Remote sensed imagery Radiometric - KTU

top 30-45 cm of the surface. Outlines spatial distribution of materials and erosion.

200 km

Th \longrightarrow

к U ______ть

reddish-pink - quartzofelspatic and clay-rich sediments

greenish-blue - sediments, residual regolith and rocks lacking K-minerals, with relative amounts of U and Th

Eolian sand of local origin - some areas of sandplain form a thin veneer over weathered bedrock

Landsat AGSO* Ratio

top 30-45 cm of the surface. Outlines spatial distribution of materials and erosion.

Regolith

- ✓ Regolith-landform relationship with structures below
- ✓ Regolith cover will vary from > 1 m to >150 m
- ✓ Transported regolith
 - ✓ Eolian sand of local origin some areas of sandplain form a thin veneer over weathered bedrock
 - ✓ Paleodrainage connecting to Lake Mackay
 - Relict ferruginous magnetic palaeochannels containing magnetic minerals (magnetite/maghemite)

✓ <u>Residual regolith</u>

- Rock and residual regolith , < 1m deep at places
- Saprolite to 70 m thick under paleovalleys ^{1,2}
- Ferruginous duricrust on sandstone and monzogranite
- Calcrete in paleovalleys
- Silcrete veneer on Murraba basin rocks

Image: regolith-landform map on DEM

¹ Blake, 1974 – Shallow stratigraphic drilling in the Granite-Tanami Region, BMR Record 1971-73
² Aquitaine Point Moody No.1 Well, Well Completion report 1966
³ English, P. 2016. Ancient origins of some major Australian salt lakes: geomorphic and regional implications

Paleodrainage and paleochannels

Two paleodrainage systems

Calcrete-filled paleovalley network up to 93 m deep

Four paleovalleys of a regional internal paleodrainage connecting to Lake Mackay

Shallower paleochannel system showing a stronger magnetic response

Relict ferruginous magnetic palaeochannels containing magnetic minerals (magnetite/maghemite)

Calcrete fill paleovalleys

- Regional-scale paleovalleys occupy topographic depressions, as part of an internal drainage network into Lake Mackay³
- Palleovalleys are delineated by calcrete and lacustrine landforms

Paleovalleys run along linear structures as contact between lithology, faults and as fill in fault blocks

Ngurrurpa Playa

- Phanerozoic Canning Basin Neoproterozoic Murraba Basin 🖉 North Australian Craton
- Contact between lithologies
- Linearstructure
- Present drainage

¹Blake, 1974 – Shallow stratigraphic drilling in the Granite-Tanami Region, BMR Record 1971-73 ³ English, P. 2016. Ancient origins of some major Australian salt lakes: geomorphic and regional implications.

Calcrete fill paleovalleys

Four paleovalleys as part of an internal drainage network into Lake Mackay² Paleovalleys 1 and 4 are extensions of the Wilkinkarra Paleovalley⁵ in NT

Cenozoic sedimentary basin at northern end of Paleovalley 3 is 91 m deep in drillhole BMR Lucas $36^{\rm 1}$

Depressions are filled with calcrete (up 15 m) and unconsolidated alluvial sandy-clay and clay (up to 90m)1

Potable water between 14-16.5 m, below 4 m of calcrete and 10 m of sand.

agga Yagga Paleovalley 1 Paleovalley 2 Paleovallev 5 Drillhol WLSON 1:250 map sh Ngurumpa re 25 km 18.12.17

¹ Blake, 1974 – Shallow stratigraphic drilling in the Granite-Tanami Region, BMR Record 1971-73
³ English, P. 2016. Ancient origins of some major Australian salt lakes: geomorphic and regional implications
⁵ Woodgate et al, 2012, Hydrological investigation of Paleovalley Aquifers in the Wilkinkarra Region, Northern Territory. Record 2012/09. Geoscience Australia

Paleodrainage network. Figure drapped on DEM. Source: GSWA record 2018/3

Paleovalley sequences

At the northern end of Paleovalley 3 is a broad Cenozoic basin reaching up to 91 m in depth¹,

Government of Western Australia | Department of Mines, Industry Regulation and Safety | www.dmirs.wa.gov.au

Fining upwards channel sequences.

E M C

Coarse sand

BMRLUCAS 36

Clay

Depth

(m) 0

Magnetic-fill paleochannels Up to 4.5 m deep

Network of dendritic buried palaeochannels filled with ferruginous magnetic material (maghemite gravel⁴), visible on mag RTV 1VD images. To be visible in mag image maghemite-gravel lenses have to be 0.4 m - 1 m thick at $1.5 \text{ m} - 4.5 \text{ m} \text{ deep}^4$ 'Eroded upper channels' surface expression – ferricrete, Fe-rich sheetwash

Mag 1VD colour on DEM – Stansmore Range

⁴ Mackey, T.2000. Palaeochannels near West Wyalong, New South Wales: a case study in delineation and modelling using aeromagnetics

Magnetic-fill paleochannels – Surface expression

Images: Landsat AGSO ratio on mag 1VD

Landsat AGSO ratio (30–45 cm deep) – outcropping or weathering materials derived from paleochannels appear in shades of red and yellow - concentrations of clay and Fe-rich minerals

High U- Th radiometric residual minerals

Sheetwash, playa or interdunes containing veneer of magnetic ferruginous lag (0.1-1.0 cm) Abundant magnetic lag in sheetwash deposits west of Stansmore Fault, Stansmore Range.

Magnetic-fill paleochannels appear as tributaries of calcrete-fill paleovalley

Source: GSWA record 2018/3

Similar maghemite-rich paleochannels in the Yilgarn are tributaries of main trunks of paleodrainages. These contain basal fluvial sand overlain by ferruginous gravel, and fragments of ferruginous duricrust⁵

⁵ Anand, RR and de Broekert, P, 2005, Regolith landscape evolution across Australia: CRC LEME, Perth, Western Australia, 345p

Neotectonism

Stansmore Fault – Devonian (?) fault active since Devonian? active in the Cenozoic?

Is this paleochannel crossing the fault? Is it the same channel or 2 networks flowing at different directions?

Sheetwash with magnetic lag at west of the fault. Palaeochannel buried under eolian sand dunes to the east of the fault

Palaeochannel in heritage area; not sampled

What's beneath the sand?

What's beneath the sand?

Transported regolith - few metres to 93 m thick ^{1, 2}

eolian sand cover - 5m to 20m

regolith infill in paleovalleys are up to 90 m thick

Two networks buried paleodrainages

Calcrete filled paleovalleys – up to 93 m deep

Magnetic palaeochannels – up 4.5 m deep

Insitu weathered bedrock

Rock and insitu weathered rock - shallow depths < 1 meter to near 70m thick below paleovalleys

Neotectonism – Vertical displacement of paleochannels at Stansmore Fault

¹Lucas 250k, Billilluna 250k – Shallow stratigraphic drilling in the Granite-Tanami Region, BMR Record 1971-73 ²Aguitaine Point Moody No.1 Well, Well Completion report 1966

