Atypical biotite alteration: timing and environmental factors

Keeling¹, Zwingmann², Raven³ & Self³

¹ Geological Survey of South Australia
² Kyoto University, Japan
³ CSIRO Land and Water

• Celadonite sites, southern Eyre Peninsula (on Total Magnetic Intensity (TMI) image) ARGA 2018 Wallaroo

Uley Graphite Mine

Uley Graphite Mine - view easterly, 1996

Generalised regolith section showing patchy nontronite alteration distributed around fault and fracture zones

0378-007

Uley brown nontronite: (NAu-2) in altered amphibolite

Uley green nontronite: (NAu-1) nontronite after biotite

NAu-1 Uley green nontronite alteration product of biotite in graphite-biotite schist

Uley Graphite Mine 2012 – celadonite

Remnant **celadonite** in kaolinised amphibolite Celadonite: Fe-rich dioctahedral 'white mica'

Uley Graphite Mine – Geological Section

CMS Nontronite: NAu-1 and NAu-2 – celadonite in plasmic zone

Sleaford Bay – Clem Cove section

Sleaford Bay - Clem Cove graphitic schist and gneiss

Detail showing celadonite, iron oxide and manganese oxide altered graphite-rich schist

Sleaford Bay celadonite

Highly altered graphite-biotite schist:

Celadonite forms as veins and replacement of biotite interleaved with flake graphite

Sleaford Bay celadonite - SEM

Celadonite: conditions for formation

- Nontronite and celadonite form precipitates in basalt, at sites of active sea-floor spreading. Sub-oxic conditions and temperatures up to 90°C.
- Submarine 'weathering': saponite, celadonite, nontronite form by alteration of volcanic glass in basalt by slow circulating seawater. Largely an oxidation process, high Fe³⁺ content in celadonite and nontronite, but buffered by reactions to slightly reducing (Velde 2003). Alteration fluid temperatures <30°C.
- "Continental meteoric fluids generally too oxidizing and have too low a cation content to favour the genesis of celadonite." (Odin et al. 1988).
- Keeling et al. (2000) concluded that at Uley graphite mine, nontronite and celadonite formed by low temperature hydrothermal activity, later overprinted by deep weathering.
- Celadonite was recently described from continental flood basalts O₂ fugacity and fluid composition buffered by basalt groundmass dissolution and celadonite crystallisation (Baker et al. 2012).

- Weathering
 - Biotite \rightarrow biotite interstratified with vermiculite or smectite
 - \rightarrow vermiculite or smectite (montmorillonite neutral/alkaline pH)
 - → kaolinite or halloysite and amorphous Fe³⁺ (hydr)oxide (which converts to goethite (α-Fe³⁺OOH)).
- Hydrothermal (low temperature)
 - Biotite \rightarrow chlorite, phengitic 'white mica', illite, or halloysite / kaolinite
- While biotite alteration to Fe-rich smectite (nontronite) is uncommon but feasible, biotite weathering to celadonite is highly unusual.

Celadonite – K-Ar dating results

Site	Sample	K (%)	Age Ma	Error Ma	δO ¹⁸ per mill
Sleaford Bay	0.2-2 µm	6.69	48.9	1.1	21.9
	3-1 µm	6.94	46.1	1.0	21.8
Uley Mine	UGCE1	3.34	20.9	0.7	21.8
	UGCE4	3.68	16.7	0.4	21.3
	UGCZ 2-5 µm	3.25	15.4	0.6	21.8

- Celadonite formation during the Cenozoic is more likely a product of weathering – no igneous or hydrothermal activity recorded in the region at this time.
- Oxygen isotope results of ~21.8‰ are consistent with lowest temperatures estimated for oceanic basalt alteration (<30°C) (Odin 1988).
- Why then celadonite and nontronite after biotite rather than vermiculite / montmorillonite – kaolin – goethite?
- Local environmental factors and the presence of graphite?

Celadonite formation - timing and sea level change

Southern Eyre Peninsula – flooded to 90 m (Miocene s/I?)

Possibility that the weathering reactions at these sites were buffered by groundwater with seawater salinity

Neutral to alkaline pH

Effect of weathering around graphitic conductors

Natural voltaic cell

Redox reactions require electron transfer

(e.g. $O_2 + 4e^- + 4H^+ \rightarrow 2H_2O$)

One source: $4Fe^{2+} \rightarrow 4Fe^{3+} + 4e^{-}$

- Weathering / oxidation gives rise to a potential difference between the oxidised and reduced zones
- Conductive bodies (e.g. graphite) facilitate the flow of negative charge (electrons/ions) - gives rise to natural spontaneous potential (SP) negative anomaly – with a relatively reduced environment around the upper zone of the conductor (Sato & Mooney 1980)

SP Survey Uley Mine - 2012

Self Potential (SP) anomaly over Uley Graphite orebody -100 mV to -300 mV

Uley graphite mine

---Eastern portion: Uley mine lease

Eh-pH stability fields for Fe in water at 25°C

- Self Potential (SP) anomaly of -100 mV to -300 mV at the Uley graphite mine indicates localised areas of reduced groundwater, sufficient to permit Fe²⁺ to remain in solution at neutral to slightly alkaline pH of 7-8 (e.g. seawater buffer).
- Conditions suitable for crystallisation of nontronite and celadonite

(Simplified Eh-pH diagram for Fe modified from Dill et al. 2010)

Alteration during bedrock weathering modified by graphite conductor

- Biotite alteration to nontronite and celadonite is not typical.
- Nontronite / celadonite are characteristic of low temperature hydrothermal alteration of oceanic basalt.
- Requires a neutral to slightly alkaline, oxidising to reducing environment (i.e. maintain high activity of Fe²⁺ and Fe³⁺ ions).
- These conditions might be replicated for Fe-rich mineral alteration around a conductive graphite body in saline groundwater, due to anomalous electro-chemical activity that develops in response to weathering.
- Possible implications for the role of graphite in low temperature redox reactions leading to precipitation of uranium from groundwater – with particular relevance to unconformity-related uranium deposits.

References

Baker LL, Rember WC, Sprenke KF, Strawn DG 2012. Celadonite in continental flood basalts of the Columbia River Basalt Group. American Mineralogist 97: 1284-1290.

Cervini-Silva J, Palacios E, Gómez-Vidales V (in press, 2018). Nontronite as natural source and growth template for (nano)maghemite [y-Fe₂O₃] and (nano)wüstite [Fe_{1-x}O]. Applied Clay Science.

Dill HG, Hansen B, Keck E, Weber B 2010. Cryptomelane: A tool to determine the age and the physical-chemical regime of a Plio-Pleistocene weathering zone in a granitic terrain (Hagendorf, SE Germany). Geomorphology 121: 370-377.

Keeling JL, Raven MD, Gates WP 2000. Geology and characterization of two hydrothermal nontronites from weathered metamorphic rocks at the Uley graphite mine, South Australia. Clays and Clay Minerals 48: 537-548.

Odin GS, Desprairies A, Fullagar PD, Bellon H, Decarreau A, Frohlich F, Zelvelder M 1988. Nature and geological significance of celadonite. In: Odin GS (ed.) Green marine clays, Developments in Sedimentology 45: 337–398, Elsevier, Amsterdam.

Velde B 2003. Green clay minerals. In: MacKenzie FT (ed.) Sediments, Diagenesis, and Sedimentary Rocks p. 309–324, Pergamon, Oxford.