

S. Pernreiter^{1,2}, I. González-Álvarez^{1,3}, J. Klump¹, G. Smith¹ & T. Ibrahimi¹

11. April 2018; Wallaroo

MINERAL RESOURCES

www.csiro.au

¹CSIRO, Mineral Resources, Discovery Program, Kensington 6151, Western Australia

²Institute of Geology, University of Innsbruck, A-6020 Innsbruck, Austria

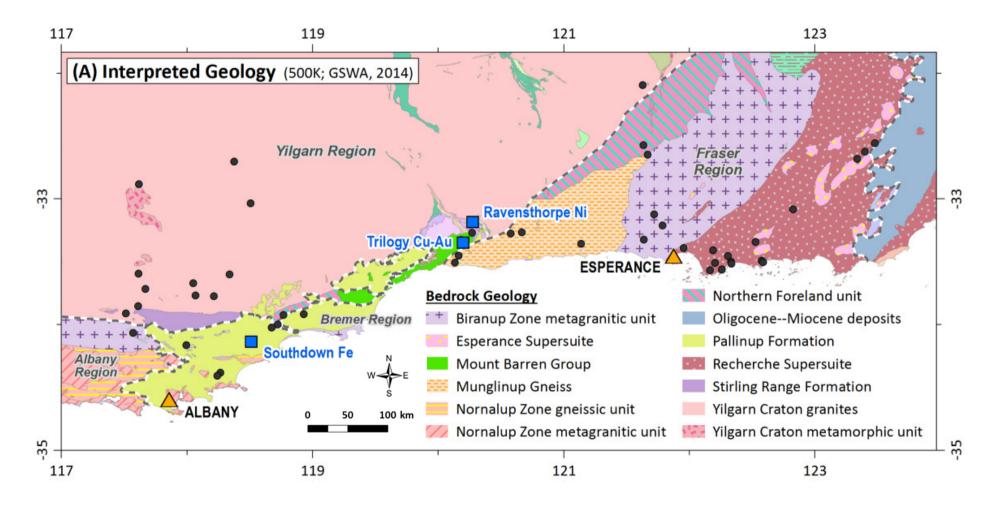
³Centre for Exploration Targeting, University of Western Australia, Crawley, Western Australia

Acknowledgment

- Ignacio González-Álvarez (CSIRO)
- Jens Klump (CSIRO)
- Tania Ibrahimi (CSIRO)
- Greg Smith (CSIRO) and
- Carmen Krapf (GSSA)

Content

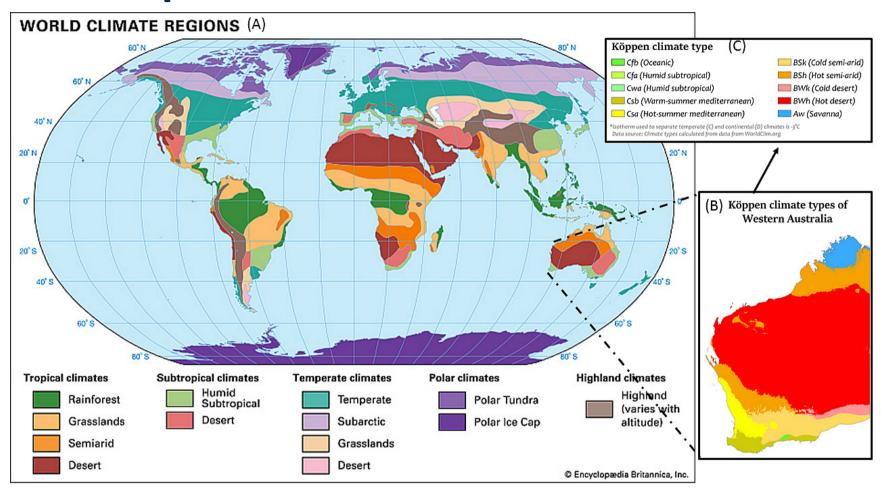
- Introduction
- Geological setting
- Landscape evolution in the South of Western Australia
- Methodology
- Results
- Discussion & Conclusion



Project objective

- Mapping boundaries and classifying landscapes:
 - Surface geometry
 - DEM and DEM products
 - Machine learning
 - Field observations
- Understanding of:
 - Processes affecting the landscape evolution
 - -> Potential surface geometry

Geological setting



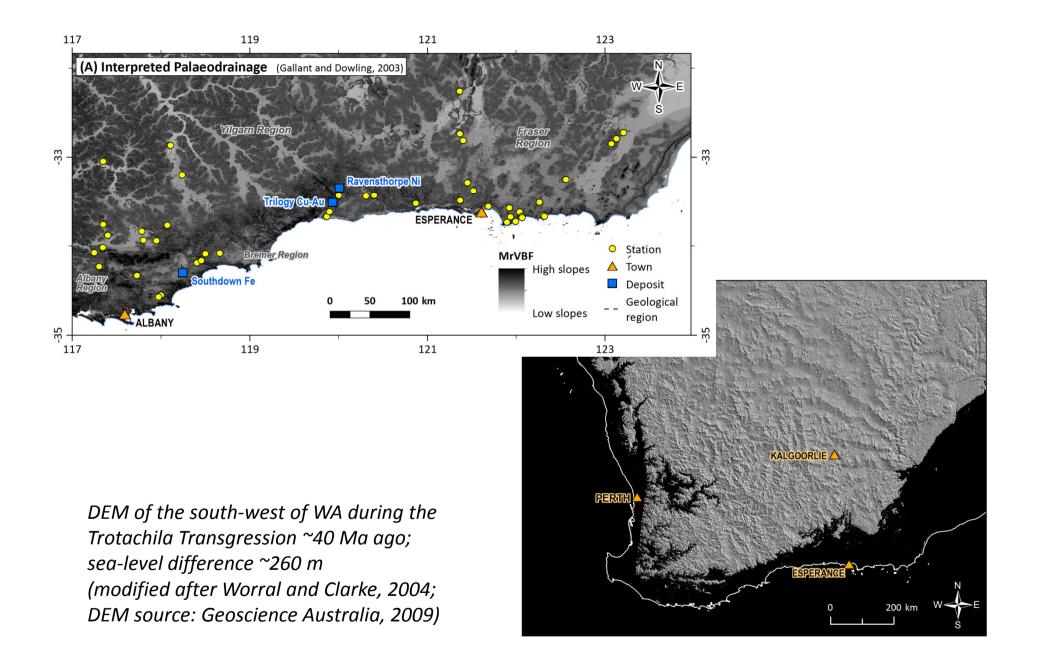
Landscape

- Definition:
 - Visible features of a land
 - Natural and man-made features
 - -> Interacting of geology, vegetation and climate
- Geomorphology:
 - Landform history and dynamics → Why landscapes look the way they do
- → Landscape evolution stores the past climate and dynamics of sedimentary systems

Landscape evolution in the S of WA

(A) World climate regions (Encyclopædia Britannica, Inc., 2017); (B) climate types of Western Australia after Köppen (Peel et al., 2007); and (C) legend to (B) after Köppen (Peel et al., 2007).

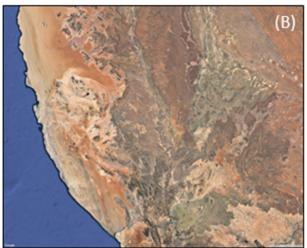
Landscape features

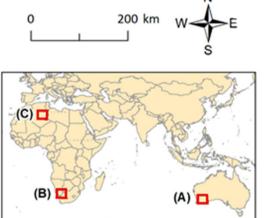


Albany-Fraser Orogen

Time	Climatic-tectonic	Sedimentary processes
Perm (298.9–251.9 Ma)	Glaciation	Removing and modifying of pre- existing landscape
Triassic – Jurassic (251.9–145.0 Ma)	Onset of seafloor spreading	Establishment of physiography and palaeodrainage setting
Cretaceous (145.0–66.0 Ma)	Drifting and rifting	Precursor valleys
Palaeocene – Early Eocene (66.0–47.8 Ma)	Uplift	Incision of inset-valleys
Late Eocene (47.8–33.9 Ma)	Relaxation	Deposition and weathering

Sedimentary dynamics and changes in the S of WA from Pert to Late Eocene (mod. after Magee, 2009)



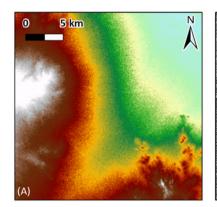


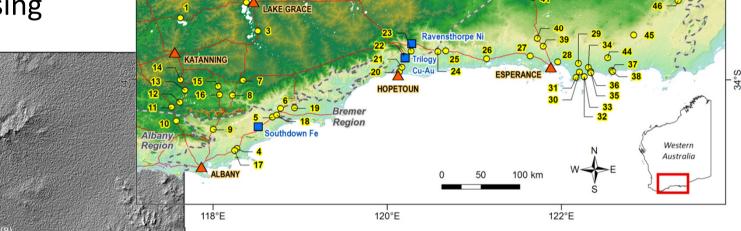
Inconsistency with climate region

(A) the south of WA (759507, 6500619; 50J);

(B) South Africa (353675, 6884350; 34J);

(C) North Africa (773218, 3110705; 31R).

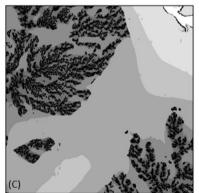

Satellite images from Google@2018.



Methodology

Field observations

Remote sensing


120°E

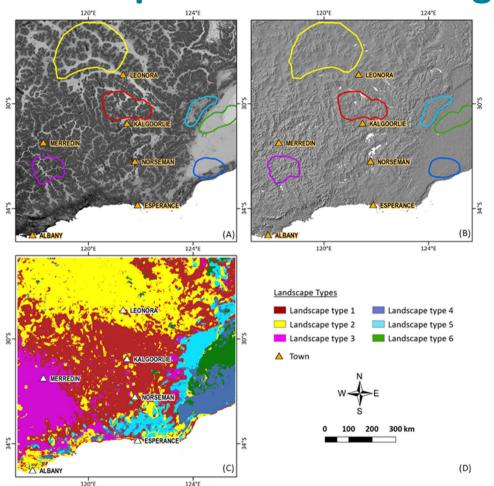
Yilgarn Region

118°E

DepositMain roadGeological region

Elevation

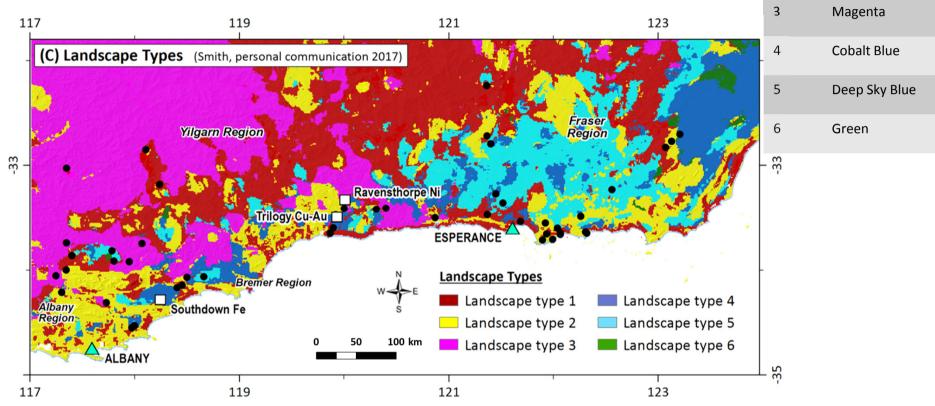
DEM source: Geoscience Australia, 2009


Landscape type 1 (Location: 374487E; 6689572N 51H):

- (A) DEM (Geoscience Australia 2009);
- (B) DEM Hillshade (Geoscience Australia 2009);
- (C) Flatness map (MrVBF; Gallant and Dowling 2003); and
- (D) Satellite Image of Bing ©2018.

Landscape patterns

Landscape definition strategy



Defining areas for different landscape type domains (A)MrVBF; Gallant and Dowling, 2003 (B)Geoscience Australia, 2009 (C)Smith personal communication, 2017 (D)Legend to (A), (B) and (C)

type	colour
1	Indian Red
2	Gold
3	Magenta
4	Cobalt Blue
5	Deep Sky Blue
6	Green

colour

Indian Red

Gold

Results

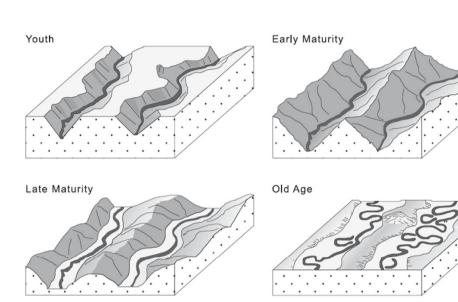
Field observations

type	colour
1	Indian Red
2	Gold
3	Magenta
4	Cobalt Blue
5	Deep Sky Blue
6	Green

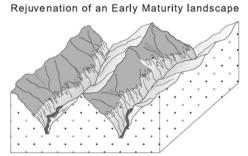
Results Remote sensing

	Indian Red	Gold	Magenta	Cobalt Blue	Deep Sky Blue
Palaeodrainage	Pronounced drainage channels; Plain wide bottom areas	No drainage pattern; Sparely plain areas	Pronounced drainage channels; Plain narrow bottom areas	Plain Flat	Wide channels areas, less pronounced (in the background)
Hill shade and Drainage	Waterlines/ - bodies	Elevation Outcropping?	Rivers, valleys	No rivers and flat	Waterbodies
DEM	± 250-550 m ± 0-125 m (coast)	± 0-1000 m	± 125-375 m	± 125 m	± 125-200 m
Geology	YC (FR)	AFO	YC	(FR) Oligocene deposits	FR
Regolith	Lacustrine Coastal Sandplain	Exposed Colluvium Sandplain	Colluvium Alluvium Sandplain	Sandplain Colluvium	Sandplain

type	colour
1	Indian Red
2	Gold
3	Magenta
4	Cobalt Blue
5	Deep Sky Blue
6	Green



Discussion & Conclusions


- Classification based only on DEM products was not able to capture all landscape variability observed
- Mapping large scale patterns in the field was possible
- Seventh colour: miscellaneous!
- Algorithm interpretations need to be linked with field observations for accurate interpretation of geometrical surface features.
- Mapping in RDT's worldwide by the use of surface geometry
- Better understanding of geochemical dispersion of the basement through cover

Outlook

The Davisian cycle of erosion showing the evolution of a landscape in youthful, mature and old age (Fryirs and Brierely, 2013)

Thank you

Mineral Resources Sabine Pernreiter BSc MSc

e sabine.pernreiter@csiro.auw www.csiro.au/lorem

ADD BUSINESS UNIT/FLAGSHIP NAME

www.csiro.au

