Could rapid XRF analysis techniques provide a step change in our ability to map geochemical dispersion patterns through cover and deliver future mineral discoveries?

Adrian Fabris
Geological Survey of South Australia

ARGA conference, Wallaroo, April 2018
XRF (X-ray fluorescence)

Background

- Measure elemental abundances of a material
- Commonly used by exploration industry
- Key advantage = additional analyses only cost time
- Cover geochemistry rarely the focus of geochemical sampling

➤ What could it mean if geochemical data was routinely generated on all drill materials?

How does XRF work?

1 - Incident X-ray
2 - Ejected electron
3 - Characteristic X-ray

pXRF
XRF (X-ray fluorescence)

Compromises of pXRF

- No Na, high DL’s for Mg and many pathfinder elements. High sample resolution can make up for some shortcomings.
Recent developments in mineral exploration

Lab-at-Rig® and Minalyze

Lab-at-Rig®

Minalyze.com
Lab-at-Rig® - utilising a waste stream

- Deep Exploration Technologies CRC – develop transformational technologies for the minerals industry
- LAR developed by CSIRO within DET CRC. Now commercialized by Imdex.
- Analysis of drill cuttings
- Utilises SRU, XRF, XRD

1 meter composite:
8.8kg powder + 9.8kg core
Mineral Systems Drilling Program

MSDP

- Collaborative drill program (GSSA + DET CRC + exploration industry)

LAR

- Geochemical results within hours of drilling
- Analyses at 1-2 m intervals

Vision

- Faster, cheaper drilling using CT-rig
- LAR an important part of DET CRC vision of ‘prospecting drilling’ and may feature in the National Drilling Initiative (MinEx CRC)
- ~1 m geochemical data from surface in holes across Australia
Mineral Systems Drilling Program

MSDP
- Diamond coring with LAR from surface
- MSDP11 – margin of Gawler Ranges
Mineral Systems Drilling Program

Igneous texture obvious in drill core from ~41 m
MSDP11 – LAR results
Mineral Systems Drilling Program

MSDP02

- Benefit of high resolution sampling – enables understanding that we would rarely get the opportunity to observe
Focus – reduce cost of gaining geochemical data
• Potential to analyse drill materials stored in Government repositories
• While basement core is the focus, cover materials can quite easily be analysed – surface to EOH geochemistry
• Possibility of more dh’s with surface to EOH geochemistry
• Current limitation – broken core difficult to analyse
1600 - 1570 Ma magmatism

- Hiltaba Suite
- Gawler Range Volcanics

Prominent Hill
Olympic Dam
Emmie Bluff
Carrapateena
Hillside
Gravels at U/C are effective sample media.
CAR02 – Carrapateena discovery hole

Gravels at U/C are effective sample media

CAR02 – Carrapateena discovery hole

Gravels at U/C are effective sample media

CAR02 – Carrapateena discovery hole

Gravels at U/C are effective sample media

CAR02 – Carrapateena discovery hole

Gravels at U/C are effective sample media
Gravels at U/C are effective sample media

CAR02 – Carrapateena discovery hole

Manalyze data

- Shale
- Calcareous Sandstone + siltstone
- Sandstone
- Hematite-breccia

Donington Suite
Upalina Subgroup
Whyalla Sandstone
Nuccaleena Formation
Yrelina Subgroup
Tregolana Shale
IHAD3 – Emmie Bluff IOCG prospect

Minalyze data

<table>
<thead>
<tr>
<th>Layer</th>
<th>Zr ppm</th>
<th>TiO2 pct</th>
<th>CaO pct</th>
<th>Cu ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saprolite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tregolana Shale</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whyalla Sandstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tapley Hill Fm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pandurra Fm Sandstone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wallaroo Group metasediments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Graph showing Zr ppm, TiO2 pct, CaO pct, and Cu ppm for different geological layers.](image)
IHAD3 – Emmie Bluff IOCG prospect

Minalyze data

- Saprolite
- Tregolana Shale
- Whyalla Sandstone
- Tapley Hill Fm
- Pandurra Fm Sandstone
- Wallaroo Group metasediments

Cu_ppm

0 50 100 200 300
Fe$_2$O$_3$ %

Cu ppm

CaO %

Copper values

- Amazing baseline dataset
Opportunities provided by semi-automated analysis

• Growing desire to collect geochemistry through cover (UNCOVER initiative)
• Emerging technologies enable these data to be collected
• As these data accumulate, provide opportunity for
 ➢ Improved logging and geochemical characterisation of basin sediments and regolith
 ➢ Detection of previously unrecognized mineralisation.
 ➢ Baseline datasets through basins that are currently lacking
The information contained in this presentation has been compiled by the Department of the Premier and Cabinet (DPC) and originates from a variety of sources. Although all reasonable care has been taken in the preparation and compilation of the information, it has been provided in good faith for general information only and does not purport to be professional advice. No warranty, express or implied, is given as to the completeness, correctness, accuracy, reliability or currency of the materials.

DPC and the Crown in the right of the State of South Australia does not accept responsibility for and will not be held liable to any recipient of the information for any loss or damage however caused (including negligence) which may be directly or indirectly suffered as a consequence of use of these materials. DPC reserves the right to update, amend or supplement the information from time to time at its discretion.